

AKI

- AKI is a clinical manifestation of underlying diseases
- Acute impairment of kidney function, resulting in the retention of urea and other nitrogenous waste products and metabolic derangement (dysregulation of extracellular volume and electrolytes)
- In patients <18 years, stage 3 AKI is also defined by KDIGO as a decrease in estimated glomerular filtration rate (eGFR) to <35 mL/min/1.73 m2.

End stage (RIFLE)	Loss (RIFLE)						
Need for kidney replacement therapy for >3 months	Need for kidney replacement therapy for >4 weeks	Initiation of kidney replacement therapy	OR	hours	Urine output of <0.3 mL/kg/hour for >24 hours or anuria for >12	OR	Increase in serum creatinine by >0.5 mg/dL to >4 mg/dL
		Initiation of kidney replacement therapy	OR	hours	Urine output of <0.3 mL/kg/hour for >24 hours or anuria for >12	OR	Increase in serum creatinine by >0.5 mg/dL to ≥4 mg/dL
		Initiation of kidney replacement therapy	OR	hours	Urine output of <0.3 mU/kg/hour for ≥24 hours or anuria for ≥12	OR	Increase in serum creatinine of ≥0.3 mg/dL to ≥4 mg/dL f

AKI

- The KDIGO define AKI as follows:
 - Increase in serum creatinine by ≥0.3 mg/dL within 48 hours, or
 - Increase in serum creatinine to ≥1.5 times baseline occurred within the prior seven days, or
 - Reduction in urine volume <0.5 mL/kg/hour for six hours

KDIGO Staging

Stage S creatinine		Urine output		
1	1.5-1.9 times baseline or ≥ 0.3 mg/dl increase	<0.5 ml/kg/hour for 6-12 hours		
2	2.0-2.9 times baseline	<0.5 ml/kg/hour for ≥12 hours		
3	3 times baseline or S creatinine ≥ 4 mg/dl	 <0.3 ml/kg/hr for ≥ 24 hours or Anuria for ≥12 hours 		

KDIGO STAGE

Stage	Serum Creatinine	Urine output
Stage I	Increase in serum creatinine of ≥0.3 mg/dL or 1.5 to 1.9 times baseline	Urine output of <0.5 mL/kg/hour for 6 to 12 hours
Stage II	Increase in serum creatinine to 2 to 2.9 times baseline	Urine output of <0.5 mL/kg/hour for 12 to 24 hours
Stage III	Increase in serum creatinine to ≥3 times baseline OR, Increase in serum creatinine of ≥0.3 mg/dL to ≥4 mg/Dl	Urine output of <0.3 mL/kg/hour for ≥24 hours or anuria for ≥12 hours OR, Initiation of kidney replacement therapy

Pre-renal

Causes of AKI

Renal/Intrinsic

Postrenal

Prerenal causes

Hypovolemia: Acute diarrhoea, vomiting, burn, sepsis, haemorrhage, diabetic ketoacidosis

Congestive heart failure

Perinatal asphyxia

Third space loss: septicemia, nephrotic syndrome

Drugs: Diuretics, ACE inhibitors

Renal/Intrinsic causes

- Vascular: HUS, Vasculitis, renal vein thrombosis
- Tubular
 - Acute tubular necrosis (ATN)
 - Wasp sting, snake venom
 - Nephrotoxic drug e.g. diethyl glycol, methanol
 - Tumor lysis syndrome (uric acid crystals tubular obstruction)
- Glomerulonephritis
 - Post infectious GN
 - Membranous proliferative GN
 - Systemic disorder: SLE, Henoch-Schonlein syndrome, Microscopic polyangiitis
- Interstitial: Interstitial nephritis, pyelonephritis
- Medications: aminoglycosides, radiocontrast, amphotericin B, ACE inhibitor, Indomethacin, NSAIDs

Post renal causes

- Urinary obstruction:
 - Posterior urethral valves, Urethral stricture
 - Bilateral UPJ obstruction
 - Blood clot in the urinary tract
 - Neurogenic bladder

Pathogenesis

- Rapid decline in GFR which results in
 - Accumulation of nitrogenous wastes in the body
 - Elevation of blood urea, creatinine, blood urea nitrogen (BUN)
 - Impairment of water, electrolytes and acid-base balances
 - Dyselectrolytaemia e.g. hyperkalaemia
 - Acid-base imbalance e.g. metabolic acidosis
 - Fluid overload, hypertension

Clinical features

Hallmark of AKI

- Scanty urine (oliguria)
- Complete cessation of urine (anuria)

Other manifestations

- Vomiting
- Convulsions

Approach of AKI

- History
 - H/o anuria, oliguria, vomiting, or blood loss
 - Assessment of fluid intake in the previous 24 hours
 - History to find out the causes
 - Fluid loss e.g. diarrhoea, severe vomiting
 - Pre-existing kidney disease e.g. AGN, NS
 - Ingestion of nephrotoxic drug e.g. diethyl glycol in paracetamol, aminoglycoside

Examination

Features of fluid overload e.g.

- Facial puffiness, oedema, hypertension
- Heart failure (hepatomegaly, pulmonary oedema)

Features of severe dehydration e.g.

- Drowsiness
- Skin pinch not going back quickly

Toxic features of AKI e.g. unconsciousness, arrhythmia, vomiting, convulsion

Flank: Palpable renal mass (renal vein thrombosis)

Urinary bladder: Palpable (PUV)

Haemodynamic status e.g. pulse, BP, capillary refill time

Investigations

CBC: Hb (reduced), Leukopenia (sepsis), Thrombocytopenia (HUS)

Blood biochemistry

- S creatinine, urea, BUN: Raised
- S electrolytes: High K+, low HCO3- Low Na+
- S calcium (low), Phosphate (high)
- ABG: Metabolic acidosis

Urine R/M/E: RBC, protein, crystal, granular cast

Blood: ASO titre, C3, C4, ANA, Anti-ds DNA, Ab to GBM

Investigations

Chest X-Ray: Cardiomegaly, pulmonary congestion, pleural effusion

Renal ultrasound scan:

To rule out UTI obstruction
Kidney morphology

Renal biopsy

ECG

Treatment

01

Hospitalize the child

02

Counsel the parents about the illness

03

Discontinue nephrotoxic drug, if any

04

Introduce, a catheter when suspected PUV, and

05

Monitor urine output

Treatment

FLUID RESUSCITATION

TREATMENT OF THE UNDERLYING CAUSE OF AKI

MANAGEMENT OF ASSOCIATED CONDITIONS

NUTRITION SUPPORT

DIALYSIS

RENAL REPLACEMENT THERAPY

Fluid resuscitation

No volume overload or CCF

• NS, 20 mL/kg over 30 minutes (hypovolemic patient generally void within 2 hours)

Hypotension due to sepsis

• IV fluid along with continuous infusion of vasopressor

Adequate circulatory volume is established/pulmonary oedema

- O2 inhalation, propped-up position
- Furosemide (2-4 mg/kg)- single IV

No urine output with this single dose of frusemide

 Continuous diuretic infusion ± Injection Dopamine (2-3 g/kg/min) for renal cortical blood flow

Fluid resuscitation

- If still no response to the diuretic challenge
 - Stop giving diuretics
 - Restrict fluid to 400 mL/m2 /day (insensible loss) + previous day urine output
 - Replace any external loss (blood, GIT) meticulously with appropriate fluid
 - Readjust fluid allocation, if volume overload
 - Monitor intake-output, body weight and S chemistries daily

Treatment of underlying causes

• Treat underlying causes if any

Management of associated conditions

- Hyperkalemia
 - Calcium gluconate 10% IV 0.5-1 ml/kg over 5-10 minutes
 - Salbutamol 5-10 mg nebulized
 - Sodium bicarbonate 7.5% 1-2 ml/kg over 15 minutes
 - Dextrose 10% 0.5-1 g/kg and insulin 0.1-0.2 U/kg IV
 - Calcium or sodium resonium (Kayexalate) 1 g/kg/day

Management of associated conditions

- Metabolic acidosis:
 - Sodium bicarbonate (1ml/kg), IV if less than 18 mEq/l
- Hypertension
 - Asymptomatic cases: Isradipine (0.05-0.15 mg/kg/dose) QID, nifedipine
 - Symptomatic cases e.g. hypertensive encephalopathy, Na Nitroprusside (0.5-10 µg/kg/min) or Labetalol (0.25-3.0 mg/kg/hour) by infusion under the supervision
 - Others: Amlodipine (0.1-0.6 mg/kg/day) BID
 - Labetelol (4-40 mg/kg/day)

Management of associated conditions

- Hyponatremia
 - Fluid restriction
 - Sensorial alteration or seizures: 3% saline 6-12 ml/kg over 30-90 minutes
- Severe anemia
 - Packed cells 3-5 ml/kg; consider exchange transfusion
- GIT bleeding: IV Omeprazole
- Hypocalcaemia:
 - Lowering s PO4 by phosphate binder will help to improve s calcium.
 Injection Calcium gluconate should not be given until tetany (1-2 ml/kg)
- Hyperphosphatemia: Dietary restriction

Nutritional support

- Encourage a high-calorie diet, rich in carbohydrates and fat to reduce protein catabolism
- Protein: 1-1.2 g/kg in infant, 0.8-1.2 g/kg in others
- Calories: 60-80 cal/kg/day
- Vitamin, and micronutrient supplements
- Restrict extra salt intake
- Avoid foods rich in potassium e.g. citrus fruits, tomato paste, chocolates and potato chips

Dialysis

Indications

- Anuria/oliguria
- Volume overload with evidence of hypertension and/or pulmonary edema refractory to diuretic therapy
- Persistent hyperkalaemia
- Severe metabolic acidosis, unresponsive to medical management
- Uremia (encephalopathy, pericarditis, neuropathy)
- Calcium: Phosphorus imbalance, with hypocalcemic tetany that cannot be controlled by other measures
- Inability to provide adequate nutiritional intake because of the need for severe fluid restriction

Ghai Essential Pediatrics-10th edition

Nelson Essential of Pediatrics-24th edition

References

UpToDate

